
Large-Scale Distributed Systems
Panel Presentation, SDP Workshop

Priya Narasimhan
Institute of Software Research International

School of Computer Science
Carnegie-Mellon University

priya@cs.cmu.edu
http://www.cs.cmu.edu/~priya

Carnegie Mellon

Carnegie Mellon© 2001 Priya Narasimhan

Scaling Middleware Systems

• What does large-scale mean?
– Number of objects/components increases
– Number of operations/sec increases
– Number of nodes increases
– Distance between nodes increases
– Number of administrators increases

• How do we “grow” middleware gracefully
without degrading any of its services?

Carnegie Mellon© 2001 Priya Narasimhan

Marrying/Composing “-ilities”

• System properties or “-ilities”
– Reliability, security, real-time, ….
– And, of course, scalability!
– Multi-dimensional property space

• Marrying various “-ilities”
– How do they impact each other?
– Trade-offs, compromises, conflicts in the marriage
– How is the marriage impacted when the number of

clients/objects/nodes/operations/etc. increases?
– How is the marriage impacted in the presence of

resource constraints?

reliability

scalability

security

Carnegie Mellon© 2001 Priya Narasimhan

Challenges

• Defining Metrics
– Quantifying an “-ility” and the composition of “-ilities”
– Developing benchmarks to evaluate “-ilities”

• Performing Trade-off Analysis
– Analyzing the marriage of “-ilities” in a resource-aware manner
– Embodying the results in techniques for self-adaptive systems

• Providing Transparency
– Hiding the intricacies of the “-ilities” within the infrastructure

so that the application logic/programming is simple

• Developing Tunability APIs
– Deciding how much control the user can have
– Finding and standardizing APIs that are best for tunability

Carnegie Mellon© 2001 Priya Narasimhan

Long-Term Benefits

• Metrics
– Objective evaluation/comparison of middleware and “-ilities”

• Trade-off Analysis
– Middleware that can support multiple “-ilities” simultaneously
– Trade-off-aware middleware that can adapt to changing resources

and application requirements, and be sensitive to resource constraints

• Transparency
– Application programmers do not need training in the “-ility”
– Savings in cost, development time, maintenance

• Tunability APIs
– Customization of a system to meet specific needs
– Prevents illegal composition of “-ilities” by inexpert users

